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Measurements of nucleoside triphosphate levels in Saccharomyces
cerevisiae reveal that the four rNTPs are in 36- to 190-fold molar
excess over their corresponding dNTPs. During DNA synthesis in
vitro using the physiological nucleoside triphosphate concentra-
tions, yeast DNA polymerase ε, which is implicated in leading
strand replication, incorporates one rNMP for every 1,250 dNMPs.
Pol δ and Pol α, which conduct lagging strand replication, incorpo-
rate one rNMP for every 5,000 or 625 dNMPs, respectively.
Discrimination against rNMP incorporation varies widely, in some
cases by more than 100-fold, depending on the identity of the base
and the template sequence context in which it is located. Given es-
timates of the amount of replication catalyzed by Pols α, δ, and ε,
the results are consistent with the possibility that more than 10,000
rNMPs may be incorporated into the nuclear genome during each
round of replication in yeast. Thus, rNMPs may be the most com-
mon noncanonical nucleotides introduced into the eukaryotic gen-
ome. Potential beneficial and negative consequences of abundant
ribonucleotide incorporation into DNA are discussed, including the
possibility that unrepaired rNMPs in DNA could be problematic
because yeast DNA polymerase ε has difficulty bypassing a single
rNMP present within a DNA template.

DNA replication ∣ nucleotide precursors ∣ nucleotide selectivity

The integrity of the eukaryotic genome is ensured in part by the
chemical nature of the storage medium—DNA. Compared to

RNA, DNA is inherently more resistant to strand cleavage due to
the absence of a reactive 2′ hydroxyl on the ribose ring. The active
sites of most DNA polymerases are evolved to efficiently exclude
ribonucleoside triphosphates (rNTPs) from being incorporated
during DNA synthesis (reviewed in (1)). However, rNTP exclu-
sion is not absolute. Early studies (reviewed in (1, 2)) revealed
that DNA polymerases do incorporate rNMPs during DNA syn-
thesis. Kinetic studies (3–13) have further demonstrated that
selectivity for insertion of dNMPs into DNA rather than rNMPs
varies from 10-fold to >106-fold, depending on the DNA poly-
merase and the dNTP/rNTP pair examined. rNMP incorporation
during DNA synthesis is potentially made more probable by the
fact that the concentrations of rNTPs in vivo are higher than are
the concentrations of dNTPs (e.g., see refs. 2, 14 and results of
this study). Thus some rNMPs are likely to be stably incorporated
into DNA during replication, and possibly during DNA repair,
e.g., nonhomologous end joining (NHEJ) of double strand breaks
in DNA (9, 15). This possibility is supported by biochemical
studies implicating RNase H2 and FEN1 in the repair of single
ribonucleotides in DNA (16, 17). It is therefore of interest to
know just how frequently rNMPs are incorporated into DNA
by the DNA polymerases that synthesize the most DNA in a
eukaryotic cell, namely DNA polymerases α, δ, and ε. Here we
investigate this by first measuring the rNTP and dNTP concen-
trations in budding yeast. We then use these concentrations in
DNA synthesis reactions in vitro to determine how frequently
yeast Pols α, δ, and ε incorporate ribonucleotides into DNA.

The results suggest that ribonucleotides may be incorporated
into DNA in much higher amounts than previously appreciated,
a possibility that has several implications.

Results and Discussion
dNTP and rNTP Pools. We first measured the amount of the four
dNTPs and rNTPs in extracts prepared from logarithmically
growing wild-type S. cerevisiae (18), and used the data to calculate
(19) their concentrations in vivo. The results (Table 1) suggest
that the concentrations of the dNTPs range from 12 to 30 μM.
These results are similar to those reported in earlier studies of
S. cerevisiae, albeit reported earlier in picomoles/cell number
(18, 20). In comparison to dNTP concentrations, rNTP concentra-
tionsaremuchhigher, ranging from500 to3,000μM(Table1).Thus,
the rNTP:dNTP ratios range from 36∶1 for cytosine to 190∶1 for
adenine. The amounts of rNTPs also greatly exceed those of
dNTPs in mammalian cells (e.g., see ref. 14).

Discrimination Against rNMP Insertion. The selectivity with which
Pols α, δ, and ε incorporate dNMPs as compared to rNMPs during
DNA synthesis has not previously been reported. To survey all
four rNTP:dNTP combinations with all three polymerases, we
designed an assay (Fig. 1A) to examine the first step required
for stable incorporation, insertion opposite a template base. Pri-
mer extension reactions were performed containing one correct
dNTP or rNTP present at the concentration in Table 1. A typical
result is shown in Fig. 1B using Pol δ, which inserts each of the
four dNMPs and each of the four rNMPs, with the latter products
having reduced mobility. Band intensities were used to calculate
(see legend to Fig. 1C) the degree to which the polymerases pre-
fer to insert dNMPs as compared to rNMPs. The results (Fig. 1C)
indicate that all three polymerases strongly prefer to incorporate
dNMPs. Selectivity varies by more than 1,000-fold, depending on
the polymerase and the identity of the nucleotide. For Pol δ, se-
lectivity ranges from 1.7 × 106 for dT∕rU to 1 × 104 for dG/rG
and dC/rC. The selectivity of Pol α (catalytic subunit only, to
avoid rNMP insertion by its associated RNA primase) is slightly
lower for three of the four nucleotides, and 220-fold lower for
dT/rU. The selectivity of Pol ε is the lowest of the three enzymes,
with only a 500-fold preference for inserting dC rather than rC.

The survey was validated for Pol δ by steady-state kinetics, the
previous method used to determine selectivity for inserting
dNMPs over rNMPs. The results (Table 2) yield selectivity values
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of 1.6 × 104 for dA/rA and 1.3 × 104 for dC/rC, in agreement with
the selectivity obtained in the survey (Fig. 1C). The selectivity of
the yeast polymerases was also compared to kinetic values
(Fig. 1C) for two other B family polymerases, RB69 Pol (8)
and ϕ29 Pol (6). These insertion data illustrate that discrimina-
tion against rNMP insertion is high, but not absolute.

Stable Incorporation of rNMPs into DNA. The above measurements
are for reactions containing one nucleotide being inserted at

one template position, and the approach only considers initial in-
sertion. To determine if Pols α, δ,and ε stably incorporate rNMPs
into duplex DNA, reactions were performed to extend a 40-mer
primer hybridized to a 70-mer template (Fig. S1A). DNA pro-
ducts were then subjected to alkaline hydrolysis under conditions
that completely hydrolyze the DNA backbone at positions where
a ribonucleotide is present (Fig. S1B and C). Three reactions
were performed (Fig. S1D). The first contained only the four
dNTPs, at the concentrations in Table 1. The second contained
the four dNTPs plus the four rNTPs, again at the concentrations
in Table 1. The third reaction was like the second except that the
concentration of the dNTPs was increased 10-fold. Primer exten-
sion generated a large proportion of full-length products (e.g., for
Pol α, see first lane in Fig. S1D). These were separated from
shorter products by PAGE, excised from the gel and recovered.
Equivalent amounts of the purified products were untreated or
treated with alkali, and the resulting products were separated
by PAGE (Fig. S1D).

As expected, the full-length products of the Pol α reaction that
contained only dNTPs were not sensitive to alkali (Fig. S1D). In
contrast, when the products of reactions containing both dNTPs
and rNTPs were treated with alkali, 4% of the total products were
hydrolyzed (Fig. S1D), and bands of varying intensities were ob-
served at 25 positions along the template sequence. Thus, Pol α
inserts rNMPs and then extends the resulting termini to incorpo-
rate rNMPs into complete DNA chains, and it does so at numer-
ous positions but with variable efficiency. That the dNTPs and
rNTPs compete with each other for incorporation is demon-
strated by the weaker band intensities observed upon alkali
treatment of products of reactions containing a 10-fold higher
concentration of the dNTPs (Fig. S1D). Similar results were ob-
tained for reactions catalyzed by Pols δ and ε (Fig. S2).

The results for reactions containing all eight nucleotides are
shown for all three polymerases in Fig. 2A. Quantification reveals
that 0.5% of the products generated in the Pol δ reaction were
hydrolyzed by alkali (Fig. S2). Over the 25 template positions ex-
amined, the average number of rNMPs incorporated per tem-
plate base copied is therefore 0.02% (green value below
second lane in Fig. 2A), i.e., Pol δ incorporates one rNMP for
every 5,000 dNMPs. In the reaction containing 10-fold higher
dNTP concentrations, Pol δ incorporated one rNMP for every
75,000 dNMPs. This demonstrates that the rNTPs are effectively
competing with the dNTPs for incorporation. On this basis, we
calculated the selectivity of Pol δ for dNMP incorporation if
all eight nucleoside triphosphates were present at equimolar nu-
cleotide concentrations. Taking into account the ∼100-fold higher
concentration of rNTPs in the reactions containing all eight nu-
cleotides, the selectivity of Pol δ would be 5 × 105. This value is
largely in agreement with the insertion selectivity measured in the
survey (Fig. 1C) and kinetically (Table 2), especially when one
takes into account the rNMP incorporation variability observed
over 25 template positions. By comparison, total rNMP incor-
poration by Pol ε was 2% (and 0.2% with 10X dNTPs), equating
to one rNMP for every 1,250 dNMPs incorporated (0.08 value in
blue in Fig. 2A). Pol α exhibited the lowest selectivity, with 4%
total rNMP incorporation (0.7% with 10X dNTPs), an average
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Fig. 1. Discrimination against rNMP insertion by yeast DNA polymerases.
(A) Schematic of discrimination assay. The ribonucleotide product has
reduced mobility compared to the deoxynucleotide product. Reactions
containing rNTPs have trace amounts of dNTPs that are incorporated (faint
gray band in lane 3). (B) Results with exonuclease-deficient Pol δ. (s), sub-
strate, (d), deoxy product, (r), ribo product. (C) Discrimination against rNMP
insertion. Discrimination factors were calculated by dividing the percentage
of dNTP product by the percentage of rNTP product, and then multiplying by
the ratios of nucleotide concentrations and differences in enzyme concentra-
tions and reaction times. For Pol ε, the previously characterized N-terminal
catalytic fragment (49) was used. For comparison, the selectivity of RB69
(8) and ϕ29 (6), two B family polymerases are shown.

Table 1. Nucleotide concentrations in Saccharomyces cerevisiae

dNTP Concentration (μM) rNTP Concentration (μM)

dA 16 rA 3000
dC 14 rC 500
dG 12 rG 700
dT 30 rU 1700

The analysis was performed as described in Methods. The nucleotide
concentrations were calculated based on a estimated value of 45 μm3 for
the volume of the soluble fraction of a haploid yeast cell, as described in
(19). These measurements are for logarithmically growing cells. A previous
study (18) indicated that the concentrations of dNTPs in S-phase cells are
about twofold higher than the average concentration in logarithmically
growing cells.

Table 2. Steady-state kinetic analysis of dNTP:rNTP discrimination
by yeast Pol δ

d/rNTP Kcat (s−1)
Km

(μM)
Catalytic
efficiency

Discrimination
factor

dATP 0.25 71 3.5 × 10−3 16,000
rATP 0.00032 1400 2.2 × 10−7

dCTP 0.090 38 2.4 × 10−3 13,000
rCTP 0.0011 6100 1.9 × 10−7

The analysis was performed as described in Methods, using exonuclease-
deficient, three-subunit Pol δ.
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of one rNMP incorporated for every 625 dNMPs incorporated
(0.16 value in red in Fig. 2A).

rNMP Incorporation Varies by Nucleotide, Sequence Context, and Poly-
merase. Studies of rNMP insertion (3–13) have typically examined
few template positions (usually one) and a subset (one or two) of
the four nucleotides. The results here greatly expand the view of
the selectivity of DNA polymerases by providing direct compar-
isons of rNMP incorporation by all three replicative polymerases
at all four template bases, each in several different sequence con-
texts. The results reveal that rNMP incorporation varies widely
along the template (Fig. 2A–C), as a function of the polymerase,
the identity of the template base and the sequence context.

Are rNMPs the Most Common NonCanonical Nucleotide Placed into
DNA? rNMPs were stably incorporated by wild-type yeast replica-
tive polymerases, i.e., Pols δ and ε contain their noncatalytic
accessory subunits and their 3′ exonucleases are intact. Also,
the DNA synthesis reactions contain all eight nucleoside tripho-
sphates at physiological concentrations. Thus it is reasonable to
consider the rNMP incorporation data in light of a model for the
division of labor among the three polymerases at the replication
fork in vivo (21–23). In this model, Pol ε performs the bulk of
leading strand replication, i.e., 50% of the yeast genome, or
1.2 × 107 nucleotides. If Pol ε were to incorporate one rNMP
for every 1,250 dNMPs in vivo, it would introduce 9,600 rNMPs
into the genome during each round of leading strand DNA repli-
cation (Fig. 2D). Pol δ and Pol α perform approximately 90% and
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Fig. 2. Stable incorporation of rNMPs into DNA by yeast DNA pols. (A) Alkali cleavage products of reactions with all eight NTPs at cellular concentrations are
shown for Pol δ, Pol α, and Pol ε. The frequency of rNMP incorporation per nucleotide synthesized is indicated below each lane. Marker lanes on either side
allow determination of the template position for rNMP incorporation. (B) Frequency of rNMP incorporation by Pol δ (green bars), Pol α (red bars), and Pol ε
(blue bars) at each of 25 template positions. (C) Average frequency of rNMP incorporation by Pol δ (green bars), Pol α (red bars), and Pol ε (blue bars) according
to template base identity. The largest range in rNMP incorporation frequency is shown below each template base, color-coded according to polymerase.
(D) Model of a replication fork with the potential number of rNMPs incorporated by each polymerase.
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10% of lagging strand replication, respectively. Given the results
in Fig. 2A, these polymerases could theoretically introduce 2,200
and 1,900 rNMPs into the genome during each round of lagging
strand DNA replication. The total is more than 13,000 rNMPs,
about 70% of which would be incorporated during leading strand
replication. If homologous mammalian polymerases behave
similarly (currently untested), then replication of the mammalian
nuclear genome, which is 500 times larger than the S. cerevisiae
nuclear genome, would introduce several million rNMPs into the
genome. Thus rNMPs could be the most common abnormal
nucleotides initially placed into nuclear genomes, potentially
exceeding the abundance of commonly studied DNA lesions such
as abasic sites and 8-oxo-guanine (24).

Bypass of a Single rNMP in a DNA Template. We next asked if an
unrepaired rNMP in a DNA template impedes DNA synthesis
by a replicative DNA polymerase. While Pol ε efficiently copies
a normal DNA primer-template (Fig. 3), it has difficulty copying
the equivalent template when it contains a single rG (Fig. 3). Re-
lative to the fully DNA template, incorporation is problematic for
insertion opposite the rG, and for four additional incorporations.

Implications. Replication dogma (2) teaches that DNA poly-
merases cannot perform de novo synthesis, but must start from
primers that are often RNA chains synthesized by RNA primases,
such as the one that copurifies with Pol α. Numerous studies have
investigated how these RNA primers are removed during matura-
tion of Okazaki fragments on the lagging strand (25). The present
study suggests that an additional burden may be to remove
rNMPs incorporated by DNA polymerases because they have
imperfect dNTP selectivity, compounded by the naturally higher
abundance of rNTPs as compared to dNTPs. That rNMPs are
likely to be incorporated by DNA polymerases in vivo is suggested
by biochemical studies implicating a type 2 human RNase H in
the repair of single ribonucleotides present in DNA (16, 26). A
similar role has been proposed for S. cerevisiae RNase H(35),
based on the fact that it can incise the DNA backbone on the
5′-side of a single ribonucleotide in duplex DNA (17), and the
fact that it prefers a single ribose in DNA as a substrate in
comparison to a stretch of riboses. If rNMPs are incorporated
at anywhere near the abundance suggested by the present data,
then there may be redundant repair pathways for removing
rNMPs incorporated by DNA polymerases. This is analogous

to the multiple ways to process the 5′ ends of Okazaki fragments
initiated by RNA primase (25), and the multiple pathways that
contribute to the repair of other common lesions in DNA, such
as abasic sites and 8-oxo-guanine (24, 27). Multiple eukaryotic
ribonucleases H exist to process RNA/DNA hybrids that may
form during replication and repair (reviewed in (28)).

DNA polymerases are known to incorporate damaged dNMPs
with ambiguous coding potential, as well as undamaged nucleo-
side triphosphates that retain more normal coding potential. An
example of the latter is dUTP, which is present in small amounts
in cellular dNTP pools and has been estimated to be incorporated
opposite template adenine perhaps 2,000 times per nuclear
genome replication in mice (29). Once incorporated into
DNA, dUMP is efficiently repaired by base excision repair,
and failure to remove it when paired opposite adenine has little
consequence because uracil codes like thymine. Theoretically,
rNMPs incorporated during replication may also be tolerated
well, to the extent they too may retain relatively normal base cod-
ing potential. However, unrepaired rNMPs in duplex DNA may
not be completely innocuous, because ribonucleotides in duplex
DNA can promote a B- to A-form conversion (30, 31). This could
influence DNA replication because efficient and accurate DNA
synthesis by replicative DNA polymerases depends on DNA helix
geometry. Indeed, the experiment in Fig. 3 reveals that a rNMP in
a DNA template strand slows synthesis by a polymerase that
participates in leading strand DNA replication (21). This may
be related to the finding that deletion of RNase H(35) increases
the sensitivity of S. cerevisiae to hydroxyurea (32), an inhibitor of
replication that reduces dNTP pools and alters the
dNTP∶rNTP ratio.

An unrepaired rNMP in DNA could also be mutagenic despite
the fact that the base of the rNMP may have normal Watson-
Crick coding potential. A structural study has shown that a
3′-terminal ribose promotes a B- to A-form conversion (33), po-
tentially resulting in a primer terminus that is more difficult to
extend than normal. We previously proposed a model (34), for
which there is considerable evidence (see ref. 35 and references
therein), wherein “difficult to extend” termini can rearrange to
misaligned intermediates with normal, correct terminal base pairs
that, upon further extension, yield insertion/deletion mutations.
Consistent with this possibility are studies (36, 37) demonstrating
that a yeast rnh35 strain has a spontaneous mutator phenotype. In
those studies, the mutator effect was suggested to result from de-
fective processing of RNA primers at the 5′-ends of Okazaki frag-
ments. However, it may be that at least some of the observed
mutagenesis resulted from replication of templates containing
unrepaired rNMPs that were incorporated by Pols α, δ, and/or
ε. It remains to be determined if rNMPs in DNA might stall re-
plication to the extent needed to induce cellular stress
responses or double strand DNA breaks. Another possibility
worth investigating is whether unrepaired rNMPs in DNA reduce
the efficiency of transcription, since transcription is impaired by
lesions in DNA (reviewed in (38)). Inhibition could be more
likely if there are sequence contexts in the genome that are
particularly prone to rNMP incorporation. Variations exceeding
100-fold are apparent from the current survey of only 25 positions
(Fig. 2). This is a very small target compared to the size of nuclear
genomes, leading one to wonder if rNMP incorporation is
even more prevalent in certain sequence contexts (repetitive
sequences, non B-DNA), and if so, with what consequences.

The idea that rNMP incorporation into DNA may be more
common than previously appreciated leads one to wonder about
possible benefits of rNMP incorporation. For example, DNA
polymerase μ incorporates rNMPs into DNA to such an extent
that it is suggested to use rNTPs as normal precursors during
NHEJ of double strand DNA breaks in the G1 phase of the cell
cycle, when dNTP concentrations are particularly low (9). Here it
may be relevant that ligases involved in NHEJ prefer to seal
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strand breaks containing a monoribonucleotide on the 3′-OH end
(9, 15). Extending this logic, it is theoretically possible that
rNMPs may be incorporated into DNA during repair synthesis
performed by either Pol δ or Pol ε, e.g., during mismatch repair,
nucleotide excision repair, or break-induced recombination. The
present study could also be relevant to mating-type switching in
Schizosaccharomyces pombe. This switching depends on a Pol
α-dependent imprint consisting of two ribonucleotides intro-
duced into the lagging strand DNA template during S phase.
The imprint is maintained until the following S phase, where it
stalls leading strand replication, thereby inducing recombination
that leads to mating-type switching (see ref. 39 and references
therein). One possible origin for a ribonucleotide imprint is lag-
ging strand DNA replication, perhaps involving RNA primase or
rNMP incorporation by Pol α, which has the highest “per-nucleo-
tide” rNMP incorporation capacity of the three replicative
polymerases (Fig. 2A).

The average selectivity of Pol δ and Pol ε is somewhat higher
than that of Pol α (Fig. 2A). Pol ε and Pol δ have intrinsic 3′

exonuclease activities that proofread mismatched primer termini
to prevent mutations, and might also excise primer terminal
ribonucleotides. One study (40) has demonstrated that the 3′

exonucleases of Klenow fragment, T4 and T7 DNA polymerases
can remove an rNMP from a 3′ terminus. If the 3′ exonucleases of
Pol δ and Pol ε also excise rNMPs, it would interesting to know if
the phenotypes of yeast strains, or the cancer susceptibility (41) of
mice that lack the 3′ exonuclease activity of Pol ε and Pol δ, may at
least partly reflect failure to excise rNMPs during replication.
Also of interest is the fact that wild-type, 4-subunit Pol ε holoen-
zyme can incorporate an average of one rNMP per 1,250 bases of
newly synthesized DNA. Based on the idea that Pol ε has a prime
role in leading strand replication (21, 22), most of these rNMPs
may be introduced into the nascent leading strand. Even if
rNMPs were present only transiently and eventually replaced with
dNMPs by DNA repair, this density for a potentially helix-
distorting base pair might serve a transient signaling function.
Possibilities include signaling for mismatch repair, nucleosome
loading behind the replication fork, chromatin remodeling,
and gene silencing. The presence of a single ribonucleotide in
DNA has been shown to reduce nucleosome formation (42 79),
and several studies (reviewed in (43)) have shown that Pol ε is
involved in gene silencing and one of its noncatalytic subunits is
involved in chromatin remodeling. Moreover, mutations in
S. pombe cdc22, and tds1 genes, encoding the large subunit of
ribonucleotide reductase and a putative thymidylate synthase, re-
spectively, cause spreading of silencing across heterochromatic
barriers in the mating-type switching region (44). These two genes
regulate dNTP pools, such that defects in cdc22 and tds1 may
alter dNTP∶rNTP ratios to promote increased incorporation of
rNMPs, offering one theoretical mechanism by which epigenetic
changes may be modulated.

Materials and Methods
Determination of dNTP and NTP Pools. At a density from 0.4 × 107 to
0.5 × 107 cells∕mL, ∼3.7 × 108 cells were harvested by filtration through
25 mm White AAWP nitrocellulose filters (0.8 mm, Millipore AB). The filters
were immersed in 700 μL of ice-cold extraction solution (12% w/v trichloroa-
cetic acid, 15 mM MgCl2) in Eppendorf tubes. The following steps were
carried out at 4 °C. The tubes were vortexed for 30 s, incubated for
15 min and vortexed again for 30 s. The filters were removed, 700 μL super-
natants were collected after centrifugation at 20,000 x g for 1 min, and
added to 800 μL of ice-cold Freon-trioctylamine mixture consisting of
10 mL of Freon (1,1,2-trichlorotrifluoroethane, Aldrich, Sigma-Aldrich Swe-
den AB >99%) and 2.8 mL of trioctylamine (Fluka, Sigma-Aldrich Sweden
AB,>99%). The samples were vortexed and centrifuged for 1 min at
20,000 x g. The aqueous phase was collected and added to 700 μL of ice-cold
freon-trioctylamine mixture. 475 μL and 47.5 μL of the aqueous phase were
collected. The 475 μL aliquots of the aqueous phase were pH adjusted with
1 M NH4HCO3 (pH 8.9) and loaded on boronate columns (Affi-Gel 601,
BioRad) to separate dNTPs and NTPs. Purified dNTP samples were adjusted

to pH 3.4 with 6M HCl, separated on a Partisphere SAX-5 HPLC column
(4.6 × 25 cm, PolyLC Inc.) and quantified using a UV-2075 Plus detector (Jas-
co). Nucleotides were isocratically eluted using 0.36 M ammonium phosphate
buffer (pH 3.4, 2.5% v/v acetonitrile). The 47.5 μL aliquots of the aqueous
phase were adjusted to pH 3.4 and used to quantify NTPs by HPLC in the same
way as dNTPs.

Discrimination Against NTP Insertion. Insertion of dA/rA and dG/rG were
analyzed using a substrate made by annealing a 32P-labeled primer strand
(50- CTGCAGCTGATGCGC) to a template strand (50-GTACCCGGGGATCCG-
TAC(T/C)GCGCATCAGCTGCAG) that either contained a T or a C at the tem-
plating position for the incoming nucleotide. Insertion of dC/rC and dT/rU
were analyzed using a substrate made by annealing a 50-32P-labeled primer
strand (50- CTGCAGCTGATGCGA) to a template strand (50-GTACCCGGG-
GATCCGTAC(G/A)TCGCATCAGCTGCAG) that contained a G or an A at the
templating position for the incoming nucleotide. Reaction mixtures
(10 μL) contained 100 nM DNA substrate. For Pol δ, the reaction buffer con-
tained 20 mM Tris (pH 7.8), 200 μg∕mL BSA, 1 mM DTT, 90 mM NaCl, and
8 mM Mg acetate. For Pol α, the reaction buffer contained 20 mM Tris
(pH 8.0), 200 μg∕mL BSA, 2 mM DTT, and 10 mM MgCl2. For Pol ε, the reaction
buffer contained 40 mM Tris (pH 7.8), 200 μg∕mL BSA, 1 mM DTT, 100 mM
NaCl, and 8 mM Mg acetate. A dNTP or rNTP was included at its measured
cellular concentration. Reactions were initiated by adding polymerase and
incubation was at 30 °C. Polymerase concentrations varied from 0.2 to
10 nM and incubation times varied from 1–20 min, in all cases resulting in
extension of less than 20% of the initial primer. Reactions were terminated
by adding an equal volume of formamide loading dye, and analyzed by
electrophoresis in a denaturing 15% polyacrylamide gel. Products were
detected and quantified using a PhosphorImager and ImageQuaNT software
(Molecular Dynamics).

Kinetic Analysis of NTP Insertion. Kinetics of dA/rA and dC/rC insertion by exo-
nuclease-deficient Pol δ were analyzed using the substrates described above
for discrimination against rNMP insertion. Reactions (10 μL) were performed
with 1,000 femtomoles (100 nM) DNA substrate in reaction buffer containing
20 mM Tris (pH 7.8), 200 μg∕mL BSA, 1 mM DTT, 90 mM NaCl, and 8 mM Mg
Acetate. Each experiment tested at least six different concentrations of the
complementary dNTP or rNTP, with the concentration of polymerase and re-
action time varied to obtain steady-state conditions. Reaction products were
separated on a 15% denaturing polyacrylamide gel, and radiolabeled pro-
ducts were detected and quantified with a PhosphorImager and Image-
QuaNT software (Molecular Dynamics). Km and kcat values were calculated
as described (45).

Stable Incorporation of rNMPs into DNA. Four-subunit Pol ε (46), three subunit
Pol δ (47) and the catalytic subunit of Pol α (48) were purified as described.
Stable incorporation of rNMPs by the replicative polymerases was analyzed
using a substrate made by annealing a 40-mer 32P-labeled primer strand
(50-CCAGTGAATTTCTGCAGGTCGACTCCAAAGGTCAACCCGG) to a 70-mer
template strand (50-ATGACCATGATTACGAATTCCAGCTCGGTACCGGGTT GA-
CCTTTGGAGTCGACCTGCAGAAATTCACTGG). Reaction mixtures contained
100 nM DNA substrate and the reaction buffer for each polymerase described
above. Nucleotide substrates were added at cellular concentrations (Table 1),
and contained only the four dNTPs, all eight nucleotides, or all eight nucleo-
tides with the dNTP concentrations increased 10-fold over the concentrations
in Table 1. Reactions were initiated by adding 10 nM Pol α, 2 nM Pol ε, or
40 nM Pol δ. Incubation was at 30 °C. Reactions were terminated after
30 min by adding an equal volume of formamide loading dye, and were se-
parated in a denaturing 8% polyacrylamide gel. Full-length reaction products
were identified by exposing the gel on x-ray film, and were excised and pur-
ified. Equivalent amounts of recovered products (as determined by scintilla-
tion counting) were treated with either 0.3 M KCl or 0.3 M KOH for 2 h at 55 °
C. Following addition of an equal volume of formamide loading dye, equiva-
lent amounts of pre- and postexcision samples were analyzed by electrophor-
esis in a denaturing 8% polyacrylamide gel. Products were detected and
quantified using a PhosphorImager and ImageQuaNT software (Molecular
Dynamics).

Bypass of a Single rG in a DNA Template. Reactions were performed to copy a
65-mer template, 50-CATGATTACGAATTCCAGCTCGXTACCGGGTTGACCTTT-
GGAGTCGACCTGCAGAA ATTCACTGG (where X ¼ dG or rG) annealed to a
50-32P-labeled 40-mer primer (30-GGCCCAACTGGAAA CCTCAGCTGGACGT-
CTTTAAGTGACC). Reaction mixtures (30 μL) contained 2.8 picomoles
(93 nM) DNA and 1.6 fmol Pol ε in a reaction buffer of 40 mM Tris (pH
7.8), 200 μg∕mL BSA, 1 mM DTT, 100 mM NaCl, 8 mM Mg Acetate, and
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10 μM dNTPs. All components except the polymerase were mixed on ice
and then incubated at 30 °C for 1 min. The polymerase was added to in-
itiate the reaction and aliquots were removed at 5, 10, 15, and 30 min.
An equivalent volume of formamide loading dye was added to terminate
the reaction. The products were heated to 95 °C for 3 min and separated
by electrophoresis through an 8% denaturing polyacrylamide gel contain-
ing 25% formamide. A PhosphorImager (Molecular Dynamics) was used to
visualize the products.
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Fig. S2. The extension products of Pol δ (A) and Pol ε (B) were analyzed for ribonucleotide incorporation using the alkali cleavage assay (Fig. S1A), in
polymerization reaction mixtures containing either the four dNTPs only, all eight NTPs, or all eight NTPs with the four dNTP concentrations all increased
10-fold over cellular concentrations. The percentage of alkali sensitive product is indicated below each image. For these experiments, full-length, exonuclease
proficient polymerases were used (3-subunit Pol δ, 4-subunit Pol ε).
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